Convergence of the sinc method applied to delay Volterra integral equations
Authors
Abstract:
In this paper, the numerical solutions of linear and nonlinear Volterra integral equations with nonvanishing delay are considered by two methods. The methods are developed by means of the sinc approximation with the single exponential (SE) and double exponential (DE) transformations. The existence and uniqueness of sinc-collocation solutions for these equations are provided. These methods improve conventional results and achieve exponential convergence. Numerical results are included to confirm the efficiency and accuracy of the methods.
similar resources
Convergence of the Sinc method applied to Volterra integral equations
A collocation procedure is developed for the linear and nonlinear Volterra integral equations, using the globally defined Sinc and auxiliary basis functions. We analytically show the exponential convergence of the Sinc collocation method for approximate solution of Volterra integral equations. Numerical examples are included to confirm applicability and justify rapid convergence of our method.
full textConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
full textConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear d...
full textConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
full textConvergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
full textMy Resources
Journal title
volume 43 issue 5
pages 1357- 1375
publication date 2017-10-31
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023